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Abstract: In this paper we discuss a special case of stochastic processes, namely 
counting processes. In particular, we describe a discrete-time counting process 
(Binomial) and a continuous-time one (Poisson). We present the main theoretical 
characteristics and properties, algorithms for computer simulations of such 
processes and some interesting applications. 
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1. Introduction 
 
Stochastic processes are random variables that change and evolve in time. As such, 
they play an important role in probability theory and related fields, providing good 
models for many real-life phenomena. Among them, counting processes deal with 
the number of occurrences of some events in time. As the name says, they count 
events, such as job arrivals (in a queuing system), message transmissions, 
customers served, completed tasks, holding times, times of various events 
occurrence, etc. They have many applications in renewal processes, survival 
analysis, seismology, software reliability and many other fields (see [1, 3, 4]). 
In this paper, we discuss Binomial and Poisson counting processes, presenting their 
main characteristics, some applications and simulations. 

1.1 Random Variables 

We start with a brief review of basic notions from Probability Theory. Let 𝒮 denote 
the sample space (the set of all possible outcomes) of some experiment and P a 
probability function (see e.g. [2, 8]). 

Definition 1.1. A random variable is a function 𝑋 ∶  𝒮 ⟶ ℝ  for which P (X ≤ x) 
exists, for all x ∈ ℝ. If  𝑋(𝒮) ⊆ ℝ is a countable subset of ℝ, then X is called a 
discrete random variable, otherwise, it is a continuous random variable. 
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A discrete random variable X is described by its probability distribution 
function (pdf) or probability mass function (pmf), an array that contains all the 
values taken by it,  𝑥 , and the corresponding probabilities 𝑝 = 𝑃(𝑋 = 𝑥 ), 

                                                          𝑋
𝑥
𝑝

∈
        (1.1) 

If X is a continuous random variable, we give its probability density function 
(pdf), i.e. the function 𝑓: ℝ → ℝ, 𝑓(𝑥) = 𝐹 (𝑥). 
We recall some discrete probability laws, which will be used later on. 
Bernoulli distribution Bern(p), with parameter 𝑝 ∈ (0,1). This is one of the 
simplest discrete distributions, with pdf 

 𝑋
0           1
1 − 𝑝    𝑝

.              (1.2) 

This distribution best models a Bernoulli trial, i.e. the occurrence of 
“success/failure” in a trial. 
Binomial distribution 𝐵(𝑛, 𝑝), with parameters 𝑛 ∈ ℕ, 𝑝 ∈ (0,1). In a series of n 
Bernoulli trials with success probability p in each trial (𝑞 = 1 − 𝑝), we let X 
denote the number of successes that occur. Then X has a Binomial distribution, 
with pdf 

      𝑋
𝑘

𝐶 𝑝 𝑞
,

.                                                (1.3) 

It is easy to notice that a Binomial 𝐵(𝑛, 𝑝) variable is the sum of n independent 
𝐵𝑒𝑟𝑛(𝑝) variables and that  𝐵𝑒𝑟𝑛(𝑝) =  𝐵(1, 𝑝). 
Geometric distribution 𝐺𝑒𝑜(𝑝), with parameter 𝑝 ∈ (0,1). In an infinite sequence 
of Bernoulli trials with success probability p in each trial (𝑞 = 1 − 𝑝),  let X 
denote the number of failures that occur before the first success. Then X has a 
Geometric distribution, with pdf 

                                                                       𝑋
𝑘

𝑝𝑞 , ,….
.               (1.4) 

Shifted Geometric distribution   𝑆𝐺𝑒𝑜(𝑝), with parameter 𝑝 ∈ (0,1).  In the 
context described above, this is the number of trials needed to get the first success 
(as opposed to failures in the previous pdf). If X has a 𝐺𝑒𝑜(𝑝) distribution, then X 
+ 1 has a Shifted Geometric distribution, hence, the name. 
Poisson distribution 𝑃𝑜𝑖𝑠𝑠(λ), with parameter λ > 0,  with pdf  

        𝑋
𝑘

!
𝑒

, ,…

.           (1.5) 

A Poisson variable X denotes the number of “rare” events (discrete occurrences of 
infrequently observed events) that occur in a given interval of time. The parameter 
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λ represents the average number of such rare events per time unit. The Poisson 
distribution is used to model number of occurrences of discrete events in an 
interval of time, such as arrival of jobs (tasks, messages, signals, phone calls, etc.), 
accidents, earthquakes, that happen in given area, errors found in software, etc. 
In what follows, we recall some important continuous distributions. Note that we 
only mention the expression of the pdf on the region where it is non-zero (so it is 
understood that it is equal to 0, elsewhere). 
Uniform distribution 𝑈𝑛𝑖𝑓(𝑎, 𝑏), with parameters 𝑎 < 𝑏 ∈  ℝ, has pdf  

 𝑓(𝑥) =
,
,   𝑥 ∈ (𝑎, 𝑏).   (1.6) 

It is used when a variable can take any value randomly from an interval, so all 
values from an interval are equally probable to be taken by that random variable. 
Exponential distribution 𝐸𝑥𝑝(λ) with parameter λ > 0,  has pdf  
     𝑓(𝑥) = λ𝑒 ,   𝑥 > 0.     (1.7) 

An Exponential variable models time: interarrival time (time between arrival of 
jobs), halftime, failure time, time between rare events, etc. The parameter λ 
represents the frequency of rare events, measured in time -1. 
It is worth mentioning that in a sequence of rare events, where the number of rare 
events occurring in an interval of time of length t has a 𝑃𝑜𝑖𝑠𝑠(λt)  distribution, the 
time between rare events is modeled by an 𝐸𝑥𝑝(λ) distribution. 
 
1.2 Stochastic processes and Markov chains 
 

Many random variables are not static, they change and develop in time. 
 

Definition 1.3. A stochastic process is a random variable that depends on time. 
It is denoted by 𝑋(𝑡, 𝑒) or 𝑋 (𝑒),  where 𝑡 ∈ 𝒯 is time and 𝑒 ∈ 𝒮 is an outcome. 
The values of 𝑋(𝑡, 𝑒) are called states. 
If 𝑡 ∈ 𝒯 is fixed, then 𝑋  is a random variable, while if we fix 𝑒 ∈ 𝒮,  𝑋  is a 
function of time, called a realization or sample path of the process 𝑋(𝑡, 𝑒). 
Definition 1.4. A stochastic process is called discrete-state if 𝑋 (𝑒) is a discrete 
random variable for all 𝑡 ∈ 𝒯 and continuous-state if 𝑋 (𝑒) is a continuous random 
variable, for all 𝑡 ∈ 𝒯. 
Similarly, a stochastic process is discrete-time if the set 𝒯 is discrete and 
continuous-time if the set of times 𝒯is an interval (bounded or unbounded) in ℝ. 
In what follows, we omit writing e as an argument of a stochastic process (as it is 
usually done when writing random variables). 
Definition 1.5. A stochastic process 𝑋  is Markov if  for any times 𝑡 < 𝑡 < ⋯ <
𝑡 < 𝑡 and any sets 𝐴 , 𝐴 , … , 𝐴 , 𝐴, 
     𝑃 𝑋  ∈ 𝐴 | 𝑋 ∈  𝐴 , … , 𝑋 ∈ 𝐴 = 𝑃 𝑋 ∈ 𝐴 | 𝑋 ∈ 𝐴  .    1.8) 

Definition 1.6. A Markov chain is a discrete-state, discrete-time, Markov 
stochastic process. 
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To simplify the notations, we do the following: A Markov chain is a discrete-time 
process, so we can see it as a sequence of random variable {𝑋 , 𝑋 , … . }, where 𝑋  
describes the situation at time 𝑡 = 𝑘. Since it is also a discrete-state process, we 
can denote the states by 1,2, … 𝑛 (they may start at other value and n may not be 
finite). Then the random variable 𝑋  has the pdf 

𝑋
1             2      …      𝑛

  𝑃 (1)     𝑃 (2)   …  𝑃 (𝑛)  
,                                      (1.9) 

where 𝑃 (1) = 𝑃(𝑋 = 1), … , 𝑃 (𝑛) = 𝑃(𝑋 = 𝑛).  Then the  Markov property 
(1.8) can be written as follows: 
               𝑃(𝑋 = 𝑗 | 𝑋 = 𝑖, 𝑋 = 𝑙, … ) = 𝑃(𝑋 = 𝑗 | 𝑋 = 𝑖),  for all  𝑡 ∈ 𝒯.   
(1.10) 
All this information is summarized in a matrix. 
Definition 1.7.  
– The  probabilities 

          𝑝 (𝑡) = 𝑃(𝑋 = 𝑗 | 𝑋 = 𝑖), 𝑝( )
(𝑡) =  𝑃(𝑋 = 𝑗 | 𝑋 = 𝑖)            (1.11) 

are called the transition and h-step transition probability, respectively. 
– The matrices 

              𝑃(𝑡) =  𝑝 (𝑡)
, ,

,  𝑃( )(𝑡) = 𝑝
( )

(𝑡)
, ,

                              (1.12) 

are called the transition and h-step transition probability matrix, respectively, at 
time t. 
Definition 1.8. A Markov chain is said to be homogeneous (stationary) if all 
transition probabilities are independent of time. 
Proposition 1.9. Let   {𝑋 , 𝑋 , … } be a Markov chain. Then the following hold:  

𝑃( ) = 𝑃 ,  for all ℎ = 1, 2, … 
                                          𝑃 =  𝑃 ⋅ 𝑃 ,  for all 𝑖 = 0, 1, …                                               
(1.13) 
Definition 1.10. Let X be a Markov chain. The vector 𝜋 = [𝜋 , … , 𝜋 ], where 
𝜋 = lim → 𝑃 (𝑘), 𝑘 = 1, … , 𝑛, (if it exists) is called a steady-state distribution 
of X. 
Proposition 1.11. The steady-state distribution of a homogeneous Markov chain 
X, 𝜋 = [𝜋 , … , 𝜋 ], if it exists, is unique and is the solution of the (𝑛 + 1) ×  𝑛 
linear system 

                                                                     

𝜋 𝑃 =  𝜋

𝜋 = 1 .
                                       (1.14) 

   
Definition 1.12. A Markov chain is called regular if there exists h ≥ 0, such that 
 

𝑝
( )

> 0, 

for all 𝑖, 𝑗 = 1, … , 𝑛. 
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Proposition 2.13. Any regular Markov chain has a steady-state distribution. 
For more considerations on stochastic processes and Markov chains, see e.g. 
[2,5]. 
 
1. Counting Processes 
 
A special case of stochastic processes are the ones where one needs to count the 
occurrences of some types of events over time. These are described by counting 
processes. 
Definition 2.1. A counting process 𝑋(𝑡), 𝑡 ≥ 0, is a stochastic process that 
represents the number of items counted by time t. 
Counting processes deal with the number of occurrences of something over time, 
such as customers arriving at a supermarket, deleted errors, transmitted messages, 
number of job arrivals to a queue, holding times (in renewal processes), etc. In 
general, we refer to the occurrence of each event that is being counted as an 
“arrival”. Since their sample paths (values) are always non-decreasing, non-
negative integers, all counting processes are discrete-state stochastic processes. 
They can be discrete-time or continuous-time. Next, we will consider the most 
widely used examples, Binomial (discrete-time) and Poisson (continuous-time) 
counting processes. 
 
2.1. Binomial counting process 
 
Consider a sequence of Bernoulli trials with probability of success p and count the 
number of “successes”. 
Definition 2.2. A Binomial counting process 𝑋(𝑛), is the number of successes in n 
Bernoulli trials, 𝑛 = 0,1, …. 
Remark 2.3. 
1. Obviously, a Binomial process 𝑋(𝑛) is a discrete state, discrete-time stochastic 
process. 
2. The pdf of 𝑋(𝑛) is 𝐵(𝑛, 𝑝) at any time n. Recall that 𝐸 𝑋(𝑛) = 𝑛𝑝. 
3. The number of trials between two consecutive successes, Y, is the number of 
trials needed to get the next (first) success, so it has a 𝑆𝐺𝑒𝑜(𝑝) pdf. Recall that  

𝐸(𝑌) = , 𝑉(𝑌) = . 

It is important to make the distinction between real time and the “time” variable n 
(“time” as in a stochastic process). Variable n is not measured in time units, it 
measures the number of trials. Let us assume that Bernoulli trials occur at equal 
time intervals, say every ∆ seconds (or other time measurement units). That means 
that n trials occur during time 𝑡 = 𝑛∆. The value of the process at time t has 

Binomial pdf with parameters 𝑛 =
∆
 and p. Then the expected number of successes 

during t seconds is 
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𝐸 𝑋(𝑛) = 𝐸 𝑋
𝑡

∆
= 𝑛𝑝 =

𝑡

∆
𝑝, 

so the expected number of successes per second is 

λ =
𝑝

∆
 . 

Definition 2.4. The quantity 𝜆 =
∆
 is called the arrival rate, i.e. the average 

number of successes per unit of time. The quantity ∆ is called a frame, i.e. the time 
interval of each Bernoulli trial. The interarrival time is the time between successes. 
 
We can now rephrase: p is the probability of arrival (success) during one frame 

(trial), 𝑛 =
∆
 is the number of frames during time t, 𝑋(

∆
) is the number of arrivals 

by time t.  
The concepts of arrival rate and interarrival time describe arrival of jobs in 
discrete-time queuing systems. In such models it is assumed that no more than 1 
arrival can occur during each ∆−second frame (otherwise, a smaller ∆ should be 
considered), thus, each frame is a Bernoulli trial. 
The interarrival time, Y, measured in number of frames, has a 𝑆𝐺𝑒𝑜(𝑝) pdf (as 
mentioned earlier). Since each frame takes ∆ seconds, the interarrival time 
is 𝑇 = ∆𝑌, a rescaled 𝑆𝐺𝑒𝑜(𝑝) variable, whose expected value and variance are 
given by 

                           𝐸(𝑇) = ∆𝐸(𝑌) = , 𝑉(𝑇) = ∆ 𝑉(𝑌) =  .                             (2.1) 

                                                      
 
Markov property of Binomial counting processes 
Obviously, the number of successes in n trials depends only on the number of 
successes in 𝑛 − 1 trials (not previous values 𝑛 − 2, 𝑛 − 3, …), so a Binomial 
process has the Markov property. Thus, it is a Markov chain. Let us find the 
transition probability matrix. At each trial (i.e. during each frame), the number of 
successes 𝑋(𝑛) either increases by 1 (in case of success), or stays the same (in case 
of failure). Then, 

                                                    𝑝 =
   𝑝,                  𝑗 = 𝑖 + 1

𝑞 = 1 − 𝑝,       𝑗 = 𝑖
0,        otherwise    

  .                             (2.2) 

Obviously, transition probabilities are constant over time. Hence, 𝑋(𝑛)  is a 
stationary Markov chain with transition probability matrix given by 

                                       𝑃 =

1 − 𝑝        𝑝                0    …     0    …
0              1 − 𝑝         𝑝     …    0   …

    0               0          1 − 𝑝   …    0   …    
⋮                ⋮                 ⋮              ⋮       

.                  (2.3) 

Notice that it is an irregular Markov chain. Since 𝑋(𝑛) is non-decreasing, e.g. 

𝑝 ,
( )

= 0, for all ℎ ≥ 0  (once we have a number of success, that number can 
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never decrease). Hence, a Binomial counting process does not have a steady-state 
distribution. 

Simulation of a Binomial counting process 
A Binomial counting process is a sequence of Bernoulli trials. We simulate those 
(see e.g. [7]) and count the number of successes. 
 
2.2 Poisson counting process 

Next, we want to obtain a continuous-time counting process, where the time t runs 
continuously through an interval and, thus, 𝑋(𝑡) changes at infinitely many 
moments. This can be obtained as a limit of some discrete-time process whose 
frame size (time between trials) ∆ approaches 0 (thus allowing more frames during 
any fixed period of time). We will let 

∆→ 0,  as 𝑛 → ∞ 

while keeping the arrival rate λ = const. 
So, let us take the limiting case of a Binomial counting process as ∆ → 0. Let us 
consider a Binomial counting process with arrival rate of λ / time unit. 𝑋(𝑡)  
denotes the number of arrivals by time t. 

The number of frames during time t, 𝑛 =
∆

→ ∞, as ∆→ 0. 

The probability of an arrival during a frame, 𝑝 = 𝜆∆→ 0,  as ∆→ 0. 
Thus, the two parameters of the Binomial pdf approach, one ∞, the other 0, yet λ 
remains constant. 
𝑋(𝑡) has a 𝐵(𝑛, 𝑝) distribution with pdf 𝑃(𝑋 = 𝑘) = 𝐶 𝑝 (1 − 𝑝) , 𝑘 = 0, 𝑛. 
Let us see what this becomes: 

                     𝑃(𝑋 = 𝑘) =
𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

𝑘!
𝑝 (1 − 𝑝)  

 

=
𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

𝑘!

λt

𝑛
1 −

λt

𝑛
 

  

                =  
(λt)

𝑘!

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)

𝑛
1 −

λt

𝑛
1 −

λt

𝑛
 

 

→  
( )

!
 ∙ 1 ∙ 1 ∙ 𝑒 ,  as 𝑛 → ∞. 

So, the limiting pdf is 

𝑋
𝑘

    
(λt)

𝑘!
𝑒

, ,…

. 

which means 𝑋(𝑡) has a 𝑃𝑜𝑖𝑠𝑠(λt) distribution. This is a Poisson counting 
process. 
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Let us analyze what happens to the other characteristics. Recall that the interarrival 
time 𝑇 = ∆𝑌, where Y has 𝑆𝐺𝑒𝑜(𝑝) pdf. For its cdf, we have 

𝐹 (𝑡) = 𝑃(𝑇 ≤ 𝑡) = 𝑃(∆𝑌 ≤ 𝑛∆) 
 

= 𝑃(𝑌 ≤ 𝑛) = 𝐹 (𝑛) 

                      = 1 − (1 − 𝑝) = 1 − 1 −
λt

𝑛
 

                                                              → 1 − 𝑒 , as 𝑛 → ∞. 
Then its pdf is  

𝑓 (𝑡) = 𝐹 (𝑡) = λ𝑒 , 𝑡 > 0, 
so T has an 𝐸𝑥𝑝(λ) pdf. 
 
Simulation of a Poisson counting process 
A Poisson counting process can be simulated by a special method, using the fact 
that each interarrival time (and the first arrival time) has an 𝐸𝑥𝑝(λ) pdf, which can 

be easily generated using the Inverse Transform Method by −
 
𝑈, where U has a 

𝑈𝑛𝑖𝑓(0,1) pdf (see [6]). 
 
3 Applications 
 
Example 3.1. Messages arrive at a communication center at the rate of 6 messages 
per minute. Assume arrivals of messages are modeled by a Binomial counting 
process. 
1. What frame size should be used to guarantee that the probability of a message 
arriving during each frame is 0.1? 
We have λ = 6/min. and 𝑝 = 0.1. Thus, 

λ =
𝑝

∆
=

1

60
 min. = 1 sec. 

 
2. Using the chosen frame size, find the probability of no messages arriving during 
the next 1 minute; 

So ∆= 1 sec. In 𝑡 =1 minute = 60 seconds, there are n =
∆

= 60 frames. The 

number of messages arriving during 60 frames, 𝑋(60), has a Binomial distribution 
with parameters n = 60 and p = 0.1. So the desired probability is  
 

𝑃(𝑋(60) = 0) = 𝑝𝑑𝑓 ( )(0) =0.0018. 
 

3. Using the chosen frame size, find the probability of more than 350 messages 
arriving during the next hour; 

Similarly, in 𝑡 =1 hour=3600 seconds, there are n =
∆

= 3600 frames. Thus, the 

number of messages arriving during one hour, 𝑋(3600), has a binomial 
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distribution with parameters 𝑛 =3600 and 𝑝 =0.1. Then, the probability of more 
than 350 messages arriving during the next hour is 
𝑃(𝑋(3600) > 350) = 1 − 𝑃(𝑋(3600) ≤ 350) = 1 − 𝑐𝑑𝑓 ( )(350) =0.6993. 
 
4. Find the average interarrival time and its standard deviation. 
By (2.1) we have  

E(T) = =   minutes =10 seconds, 

𝑆𝑡𝑑(𝑇) = 𝑉(𝑇) = = √0.0250 minutes ≈ 9.5 seconds. 

5. Find the probability that the next message does not arrive during the next 20 
seconds. 
Recall that the interarrival time 𝑇 = ∆𝑌, where Y has 𝑆𝐺𝑒𝑜(𝑝) distribution and, 
hence Y - 1 has a 𝐺𝑒𝑜(𝑝) pdf. The next message does not arrive during the next 20 
seconds, if 𝑇 > 20. So,  

𝑃(𝑇 > 20) = 𝑃(∆𝑌 > 20) = 𝑃(𝑌 > 20) 

                                            = 1 − 𝑃(𝑌 ≤ 20) = 1 − 𝑃(𝑌 − 1 ≤ 19) 

                          = 1 − 𝑐𝑑𝑓 (19) = 0.1216. 

Note that this is also the probability of 0 arrivals during n =
∆

= 20 frames. The 

number of messages arriving during the next 20 seconds, 𝑋(20), has a Binomial 
distribution with parameters n = 20 and 𝑝 = 0.1. Thus, the probability that no 
messages arrive during the next 20 seconds is 

𝑃(𝑋(20) = 0) = 𝑝𝑑𝑓 ( )(0) = 0.1216. 

6. The following MATLAB code gives a simulation and illustration for the number 
of messages arriving in one minute: 
% Simulation of Binomial counting process with Del frame 
size.  
clear all 
 N = input(’size of sample path = ’); 
 p = input(’prob. of success (arrival) = ’); 
 Del = input(’frame size (in seconds) = ’); 
 X = zeros(1, N); 
 X(1) = (rand < p); % X denotes the nr. of successes 
 for t = 2 : N 

 X(t) = X(t - 1) + (rand < p); % count the nr. of 
successes 

 end 
clf 
 % illustration 
 axis([0 N 0 max(X)]); % allot the box for the simulated 
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segment 
 hold on 
 title(’Binomial process of arrivals’); 
 xlabel(’time’); ylabel(’nr. of arrivals’); 
 for t = 1 : N  

plot(t, X(t), ’*’, ’MarkerSize’, 8)% plot each point with 
a ’*’  
pause(Del) 

end 
The program returns a sequence of the number of arrivals (messages) each second. 
The illustration is shown in Figure 1. 
size of sample path = 60 
prob. of success (arrival) = 0.1 
frame size (in seconds) = 1 
X=      
001111222222222222222222233333344444444444445555566667888888 

 

Figure 1. Binomial counting process 

Example 3.2. Let us revisit the previous example and model the arrival of 
messages using a Poisson counting process, keeping the same arrival rate of 6 
messages per minute. 
 
1. Find the probability of no messages arriving during the next 1 minute;  
We have 𝑡 =1 minute and λ= 6  / minute. The number of messages arriving during 
1 minute, 𝑋(1), has a Poisson distribution with parameter λt = 6. So the desired 
probability is 

𝑃(𝑋(1) = 0) = 𝑝𝑑𝑓 ( )(0) = 0.0025. 
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2. Find the probability of more than 350 messages arriving during the next hour; 
Similarly, in 1 hour = 60 minutes, the number of arriving messages, 𝑋(1), has a 
Poisson distribution with parameter λt = 360. Then the probability of more than 
350 messages arriving during the next hour is 

𝑃(𝑋(60) > 350) = 1 − 𝑃(𝑋(60)) ≤ 350) = 1 − 𝑐𝑑𝑓 ( )(350) = 0.6894. 

3. What is the average interarrival time and its standard deviation? 
The interarrival time, T, now has an 𝐸𝑥𝑝(λ) = 𝐸𝑥𝑝(6) distribution, so 

E(T) = =   minutes =10 seconds, 

𝑆𝑡𝑑(𝑇) = 𝑉(𝑇) = =  minutes = 10 seconds. 

Notice that the average interarrival time has not changed. This is to be expected, 
since jobs (messages) arrive at the same rate, λ, regardless of whether their arrivals 
are modeled by a Binomial or a Poisson process. 
However, the standard deviation is slightly increased. That is because a Binomial 
process has a restriction on the number of arrivals during each frame, thus reducing 
variability. 
 
4. Find the probability that the next message does not arrive during the next 20 
seconds. 

Either we work with seconds (so λ = /second) and compute the probability 

𝑃(𝑇 > 20), where T has an 𝐸𝑥𝑝(1/10) distribution) or in minutes (λ = 6 / 
minute, 20 seconds = 1/3 minutes) and compute the probability 𝑃(𝑇 >1/3), where 
T has an 𝐸𝑥𝑝(6) distribution. Either way, we have 

𝑃(𝑇 > 20) = 1 − 𝑃(𝑇 ≤ 20) = 1 − 𝑐𝑑𝑓 (20) = 0.1353. 
Again, this is the same as 0 arrivals in 1/3 minutes, where the number of arriving 
messages, 𝑋(1/3), has a Poisson distribution with parameter λt = 2. 

𝑃 𝑋
1

3
= 0 = 𝑝𝑑𝑓 (0) = 0.1353. 

 
5. The following MATLAB code gives a simulation and illustration for the arrival 
times and the number of messages arriving in one minute: 
% Simulation a of a Poisson process on the time interval [0, 
Tmax]. 
clear all 
lambda = input(’frequency lambda = ’); % given arrival rate 
Tmax = input(’time frame (in minutes) Tmax = ’); % given time 
period 
arr_times = -1/lambda * log(rand); % array containing arrival 
times 
last_arrival = arr_times; % each interarriv. time is 
Exp(lambda)                  
while last_arrival <= Tmax 
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 last_arrival = last_arrival - 1/lambda * log(rand); 
 arr_times = [arr_times, last_arrival]; 

 end; 
arr_times = arr_times(1:end - 1) % nr. of arrivals during 
time Tmax 

% last last_arr should not be 
included 

% illustration 
step = 0.01; % small step size, to simulate continuity 
t = 0 : step : Tmax; % time variable 
Nsteps = length(t); 
X = zeros(1, Nsteps); % Poisson process X(t) 
for s = 1 : Nsteps; 
 X(s) = sum(arr_times <= t(s)); 

 end; % X(s) is the number of arrivals by the time s  
axis([0 max(t) 0 max(X)]); hold on 
title(’Poisson process of arrivals’); 
xlabel(’time’); ylabel(’number of arrivals’); 
plot(t, X, ’r’) 
The program returns the arriving times and a sequence for the number of messages 
arriving every 0.01 of a minute (or every 0.6 of a second). The illustration is shown 
in Figure 2. 
frequency lambda = 6 
time frame Tmax = 1 
arr_times = 

0.0912 0.3310 0.4608 0.4671 0.5677 0.6763 0.9201 
X = 

00000000001111111111111111111111112222222222222444 
444444455555555555666666666666666666666666677777777 

 
Figure 2. Poisson counting process 
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Note. All computations of pdf’s and cdf’s were done in MATLAB. 

4 Conclusions 

This paper presents the main properties of counting processes. We present 
theoretical considerations, computational formulas and discuss properties of 
Binomial and Poisson counting processes. We also describe how each counting 
process can be simulated on the computer. As applications, we model a problem 
(message arrivals) by both a Binomial and a Poisson counting process, computing 
and discussing several quantities relating to the problem. We also illustrate the 
arrivals of messages in both cases using computer simulations. 
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